

A.D.M. COLLEGE FOR WOMEN

(Autonomous)

Affiliated to Bharathidasan University

(Nationally Accredited with "A" Grade by NAAC – 4th Cycle)

NAGAPATTINAM 611 001.

LOCAL/NATIONAL/REGIONAL/GLOBAL RELEVANCE PG AND RESEARCH DEPARTMENT OF MATHEMATICS

Programme: B.Sc Mathematics Year: 2022-2023

Course Code	Title of the Course	Local/Regional/ National/Global	Rationale	Course Outcomes	PSOs Addressed	Cognitive Level
MUA	Differential Calculus and Trigonometry	Local , Regional, National & Global	* *	 CO1:Apply Leibnitz's Theorem for finding the nth derivative of product of functions. 	PSO2,3,4	U
				• CO2: Evaluate envelopes and curvatures of plane curves.	PSO1,2,3,4	АР

				• CO 3: Compute maxima and minima of plane curves	PSO1,2,3,4	U
				CO 4: Interpret the relation between circular and hyperbolic functions	PSO1,2,3,4	U
				• CO 5: Find the sum of infinite series using appropriate methods	PSO1,2,3,4	U
MUB	Classical Algebra	Local , Regional, National & Global	To get more depth in basic topics	• CO 1: Understand the aspects of classical algebraic structures	PSO2	U,KN

			• CO 2: Find the nature of the roots of the equations	PSO3	KN,AN,E
			CO3: Solve and apply the inequalities.	PSO3	E,AN,AP
			CO 4: Find the inverse and rank of the matrix	PSO2,3	E,AP
			CO5: Calculate the Eigen values and vectors of a matrix and apply the C-H theorem for finding the inverse of a matrix	PSO2,3,4	E,AP
MUC Integr	al Calculus Local , Regional National & Global	, Application of mathematics in chemistry is inculcated.	• CO1: Find the solutions of the integral.	PS02,3	CN,E

				• CO2: Solve the integration by parts.	PSO2,3	E
			 CO3: Find the area of plane curves using Cartesian and polar coordinates 	PS02,3,1,5	KN,E	
				 CO4: Find the area by changing the given order of integration 	PSO 2,3	U,KN,E
				C05: understand the concepts of Beta and Gamma functions	PSO 2,3	U,KN,E
MUD	Analytical Geometry of Three Dimensions	Local , Regional, National & Global	Better application knowledge	 CO 1: understand the three dimensional space, angle between lines and planes. 	PSO1,3,4,5	U
				• CO2: Find the coplanar lines, skew lines and to find shortest distance between them.	PSO1,3,4,5	АР

		• CO 3: Formulate the equation of sphere and their properties.	PSO1,3,4,5	АР
		• CO 4: Form the equation of cone with a conic as guiding curve and the tangent lines.	PSO1,3,4,5	АР
		 CO 5: retrieve the equation of cylinder and right circular cylinder. 	PSO1,3,4,5	АР
MUE Differential Equations and Laplace Transforms	Local, Regional, Application of National & Global equations and Laplace transforms are vast.	• CO 1: Solve the higher order linear differential equations with constant coefficients.	PS02,3,4	KN,EN
		• CO 2: Solve differential equations by using	PSO2,3,4	CN,EN

				method of variation of parameters • CO 3: Find solutions		
				• CO 3: Find solutions of first order partial differential equations of the standard forms	PSO3,5	KN,CN,EN
				CO 4: Solve the PDE's using Charpit'smethod.	PSO1,3	U,KN,EN
				• CO 5: apply the techniques of Laplace transform and inverse Laplace transform	PSO2,3,4	U,CN,KN,EN
MUF	Vector Calculus and Fourier Series	National & Global	To get more depth in basic Mathematical concepts.	 CO 1: Explain the concepts of differentiation of vector field. 	PS01,3,4	U,C,KN

• CO 2: Integrate the vector functions over curves and surfaces.	PSO1,2,3,4	U,E
• CO 3: Compute integrals using Green's theorem, Stoke's theorem and the divergence theorem.	PSO1,2,3,4	U,E,AP
• CO4: Solve the wave equations, Laplace equations using Fourier series	PSO1,2,3,5	U,E,AP
• CO5: Derive the fourier series to the periodic signals in half range.	PSO1,2,3,5	U,E,AP

MUG	Sequences and Series	Local , Regional, National & Global	To meet the current requirements and concentrate more	• CO 1: Find the convergence of sequences	PSO4	U,E
	on application oriented problems	CO 2: Evaluate the limits and describe the behavior of monotonic sequences	PSO1,2,3, 4	U,E,CN		
				• CO 3: Interpret the concepts of subsequences and Cauchy sequences.	PSO1,2,3, 4	U,CN,KN
				• CO 4: Discuss the convergence or divergence of series using various tests	PSO1,2,3, 5	U,AN
				• CO 5: Compute the absolute convergence of series.	PSO1,2,3,5	KN,E

MUH Number Theory	Local, Regional, To highlight National & nuances in Global world of numl	the	CO 1: Find the divisor, sum and product of a given natural number PSO2,3 4 CN,EN	
			CO 2: Gain the knowledge of number theoretic functions PSO3,4 KN,AN	
			CO 3: Interpret the famous conjectures in PSO2,3,4 CN,AN number theory	
				• CO 4: Solve the system of linear congruence using the Chinese remainder theorem.
			CO 5: Apply the law of quadratic reciprocity to classify numbers as PSO1,2,3,4 quadratic residues & quadratic non- residues	

MUI	Algebra	Local , Regional, National & Global	To get Knowledge of pure mathematics	• CO1:Gain the knowledge of sets, mapping, relations, groups and subgroups.	PSO2,4,5	U,KN
				• CO2:Interpret the notion of normal groups and isomorphism.	PSO2,4	U,C
				• CO 3: Analyze the concepts of homomorphism and isomorphism for rings and field.	PSO2,4	U,AN
				• CO 4: Recognize the facts of vector space and linear independence.	PSO1,2,3,4	U,C
				• CO 5: Calculate the basis, dimension, matrix of the linear	PSO2,4	U,E

				transformation and inner product space
MUJ	MUJ Real Analysis Local , Regional, National & Global	National &	To get more depth in basic topics.	 CO1: Gain the knowledge of sets, mapping, relations, pSO2,4,5 U,KN groups and subgroups.
			CO2:Interpret the notion of normal groups and PSO2,4 U,C isomorphism.	
				C03: Analyze the concepts of homomorphism and isomorphism for rings and field. PSO2,4 U,AN U,AN
				CO4: Recognize the facts of vector space and lin ^e ar independence. PSO1,2,3,4 U,C

				CO5: calculate the basis, dimension, matrix of the linear transformation and inner product space	PSO2,4	U,E
MUK	Mechanics	Local , Regional, National & Global	More preference is given for pure mathematics	• CO 1: Apply the order completeness property.	PSO2,3,4	AN,KN
				• CO 2: Differentiate the continuity and discontinuity of functions.	PS01,2,3,45	E,AN,AP
			• CO 3: Find the derivative of a given function.	PSO 1,3,4,5	E,AN,AP	
				• CO 4: Demonstrate the mean value theorems.	PSO1,2,3,4	E,AN,AP,KN
				CO 5: I interpret the integer ability of functions	PSO1,3,4,5	E,AN,AP,KN,C

MUE3	Operations Research	Research National & Global	Latest reference needed for higher level concepts.	• CO 1: Apply the order completeness property.	PSO3,5	UN,KN
			• CO 2: differentiate the continuity and discontinuity of functions.	PSO1,2,3,4	KN, CN	
			• CO 3: Find the derivative of a given function.	PSO 3,4	KN, CN	
			• CO 4: Demonstrate the mean value theorems.	PSO2,3	CN,EN,AN	
				• CO 5: Interpret the integrality of functions	PSO1,2,3,4	CN,AN
MUL	Complex Analysis	Local , Regional, National & Global	To get the Knowledge of Analysis.	CO 1: Understand the basic concepts of Cauchy-Riemann equations in Cartesian and polar coordinates.	PSO2,3,4	AN,E,KN,AP

CO 2: Interpret the analytic functions harmonic functions elementary and bilinear transformation concepts.		AN,E,KN,AP
CO 3: Apply the theorems using complex integration.		AP,AN,E
• CO 4: Expand the Taylor's and Laurent's series of functions.	PSO1,2,3,4,5	AN,AP,E,KN
CO 5: solve the definite integrals using the concepts of residues.		E,AN,AP,KN

MUM & MUNY	Numerical Methods with C Programming (Theory & P)	Local , Regional, National & Global	For efficient project task completion and data analysis	• CO 1: Find the variables, constants, expressions and operators.	PSO2,4,5	U,KN
		• CO 2: Use functions and arrays.	PSO2	U,KN		
				• CO 3: Write the programmes on arithmetic operations and recursion.	PSO2,5	U,AP,KN
				CO 4: Evaluate the linear equations and matrices numerically.	PSO2	U,AP
				• CO 5: Solve simultaneous system of equations using numerical techniques.	PSO2	U,AP

MUO	Astronomy	To know about the celestial objects.	• CO1: Perform calculations on celestial bodies.	PSO1,3,4	U
		• CO 2: Compare our galaxy with other galaxies.	PSO1,3,4	U	
			• CO 3: apply the principles and fundamental techniques of the astronomy.	PSO1,5	АР
			• CO 4: Analyze the size, age structure and motion of the universe over all using cosmological models.	PSO1,3,4	AN

				• CO 5: Understand the phases of moon and occurrence of Eclipses.	PSO1,3,4	U
MUE4	Stochastic Processes	Local , Regional, National & Global	To know about real world applications	CO 1: Analyze and solve linear programming models of real life situations	PSO2,3	CN,EN
				 CO 2: Understand the problem solving method of Simplex and Big M Method. 	PSO2,3	EN
				• CO 3: Exhibit the applications of Transportation Problem.	PSO2,3,1,5	KN,EN

			• CO 4: Solve Assignment PSO2,3 U,KN,EN problems.	
			CO 5: Use PERT and CPM techniques in solving Network Analysis problems PSO2,3 U,KN,EN	
MUE5	JE5 Graph Theory Local , Regional, To emphasize National & applications. Global	_	• CO 1: Understand the basic concepts of PSO 2 KN,AN Formal Languages.	
				• CO 2: Permutations PSO1 KN,AN and Combinations.
			CO 3: Acquire knowledge about PSO4 AN,AP Finite State Machines	
			CO4: Understand Numeric Functions PSO4 AN,AP	
			CO5: Understand Recurrence Relations. PSO1 AN,E	

A.D.M. COLLEGE FOR WOMEN

(Autonomous)

Affiliated to Bharathidasan University
(Nationally Accredited with "A" Grade by NAAC – 4th Cycle)
NAGAPATTINAM 611 001.

LOCAL/NATIONAL/REGIONAL/GLOBAL RELEVANCE PG AND RESEARCH DEPARTMENT OF MATHEMATICS

Programme: M.Sc., Mathematics Year: 2022-2023

	ourse ode	Title of the Course	Local/Regional/ National/Global	Rationale	Course Outcomes	PSOs Addressed	Cognitive Level
PC	PGMA Algebra Local , Regional, Standard knowledge of National & algebra for global Scenario	• CO1:Understand Sylow's theorem and its applications.	PSO2	An			
					• CO2:Analyze the various types of polynomials.	PSO1	An

				CO3:Develop the knowledge about modules.	PSO2	Ар
				 CO4:Evaluate the roots and characteristics of polynomials. 	PSO1	An
				• CO5:Apply finite fields in Galois Theory	PSO1 PSO2	An & Ap
GMB	Real Analysis	Local , Regional, National & Global	To get the Knowledge of Analysis.	 CO1:Acquire the basic topological properties on metric spaces. 	PSO1	U

			• CO2:Interpret the continuity and discontinuity of functions.	PSO1	U
			• CO3:Analyze the Riemann - Stieltjes integral and their properties.	PSO1	AN
			• CO4:Develop the knowledge of sequence and series of functions.	PSO1	U
			 CO5:Understand functions of several variables. 	PSO1	AN
PGMC Ordinary Differential Equations	Local , Regional, National & Global	Latest reference needed for higher level concepts	 CO1:Obtain the solutions of ordinary differential equations 	PSO1	U

				• CO2:Evaluate the special functions.	PSO2	AP
				 CO3:Analyze the behavior of the solutions of the ODE. 	PSO1 PSO2	AP
				• CO4:Discuss the properties of boundary value problems.	PSO1,2,4	AP
				• CO5:Solve the system of nonlinear equations.	PSO1,4	AP
PGMD	Advanced Graph Theory	Local , Regional, National & Global	Application Oriented topics were added	CO1:Analyze the automorphism and operations on graphs.	PSO1	U
				• CO2:Discuss the characterization, centers and centroids of trees.	PSO1	U

		• CO3:Find the independent sets and matchings of graphs, Eulerian and Hamiltonian graphs.	PSO1,2	U,AN
		• CO4:Color the graphs and find the chromatic polynomial.	PSO1,4	AP
		• CO5:Interpret the planar and non-planar graphs.	PSO1,2	AP
PGME1 Advanced Numerical Analysis	Local, Regional, Latest reference needed for National & Global higher level concepts	CO1:Solve transcendental and polynomial equations	PSO1	U
		• CO2:Determine the solution of linear equations.	PSO1	AP
		• CO3:Evaluate the higher order	PSO1,4	AP

					interpolation.		
				•	CO4:Estimate the numerical differentiation and integration.	PSO1	U
				•	methods of solving integration numerically.	PSO1,3	AP
PGMG	Partial Differential	_	To know about higher	•	CO1:Classify the PDE.	PSO1	U
	method and	method and its application in Heat,	•	Charpit's and Jacobi's method for solving PDE.	PSO1	U	
				•	CO3:Solve second order and higher order PDE.	PSO1	U
				•	CO4:Evaluate non Linear equations of the second order.	PSO1,4	AP

				• CO5:Compute boundary value problems.	PSO1,3	AP
PGMH	PGMH Classical Dynamics Local , Regional, National & Global	National &	To get the knowledge about mathematical concepts in Classical version.	CO1: Analyze the mechanical system of particles.	PSO1	AN
				• CO2: Solve the Lagrange's equations of motion for the set of generalized coordinates.	PSO1	U
			• CO3: Apply Lagrange's equations on various functions.	PSO1	AP	
				• CO4: Interpret Hamilton's equations and its principles.	PSO2	U

		• CO5:Retrieve Hamilton – Jacobi Equation.	PSO1	AP
PGME2 Fuzzy sets and its Applications	Local, Regional, Recent Trend of National & Global Knowledge	• CO1: Discuss the properties and extension principles of fuzzy sets.	PSO1,2,3,4,5	KN,CN
		• CO2: Apply the mathematical operations on fuzzy sets.	PSO1,3,4	KN,EN
		CO3:Construct the arithmetic operations on fuzzy numbers.	PSO1,4	CN,EN
		• CO4: Interpret the relations on fuzzy sets.	PSO1,2,3,4	KN,AN
		CO5: Analyze fuzzy concepts in decision making	PSO2,3,4	AN,EN

				problems.		
PGMI	Measure and Integration	Local , Regional, National & Global	To get the Knowledge about concepts of Integration using Measures.	• CO1: Find the Lévesque measure of measurable sets.	PSO2,5	KN,CN
			• CO2: Discuss the integration of non-negative functions.	PSO2,5	KN,CN,AN	
				• CO3: Analyze abstract measure spaces.	PSO2,4,5	CN,AN
				CO4:Demonstrate Hahn decomposition theorem and signed measure.	PSO2,5	CN,AN
				CO5: Compute product measure.	PSO2,5	KN,EN
PGMJ	Topology	Local , Regional, National & Global	To get the Knowledge of Analysis in advance	• CO1: Analyze the fundamental concepts of general	PSO1,2	U,KN,AN,AP

				topology.		
				 CO2: Determine the types of topological spaces and their properties. 	PSO2	U,KN,AN
				• CO3: Discuss Uryzohn's lemma and the Tietze Extension Theorem.	PSO1,2,4	U,KN,AN,AP
				• CO4: Demonstrate Tychonoff theorem .	PSO2,4	U,AN,AP,KN
				• CO5:Compute the complete and compactness in metric spaces.	PSO 2,4	U,AN,AP,KN,E
PGMK	Integral Equations and Transforms	Local , Regional,	To get the knowledge about	• CO1:Solve the linear integral equations.	PSO1	E,AP

	National & Global	Mathematical methods to solve problems.	 CO2:Find the solutions of Volterra and Fredholm integral equations. 	PSO1,2	C,E
			• CO3:Demonstrate the variational problems on moving boundaries and fixed boundaries.	PSO3	KN,C
			• CO4: Evaluate the Fourier transform, finite sine and cosine transforms.	PSO1,2,3	U,KN,AP
			 CO5: Apply Fourier transform in initial and boundary value problems. 	PSO1,2,3	U,KN,AP
Mathematical PGME3 Modeling	Local , Regional,	To study the mathematical models and apply them in real life problems	• CO1: Create models on linear growth	PSO1,2,3,4	U,KN,AP

		National & Global		and decay of any system.		
				CO2:Form mathematical modeling in epidemics in population.	PSO3,4	U,KN,E
				CO3:Design mathematical modelling in any type of motions.	PSO1,3,4	U,KN,C,AN
				 CO4:Solve problems in dynamics and genetics using modeling. 	PSO2,3	U,E
				 CO5: Demonstrate various real life situations through graphs. 	PSO1,3,4,5	U,CN,KN
PGME4	Optimization Techniques	Local , Regional, National & Global	Recent development and its	• CO1: Write the algorithms in		

	Applications in research.	integer programming problem.	PSO1,3	KN,C
		CO2: Apply the OR techniques in various models.	PSO1,4	CN,E
		 CO3: Analyze the problems on decision theory and game theory. 	PSO3,4	CN,AN
		• CO4: Optimize solutions of inventory models.	PSO3,4	EN,AN,AP
		• CO5: Interpret the concepts of non-linear programming problems.	PSO2	AN,AP
PGML Functional Analysis	Local, Regional, To get the knowledge National & Global of Analysis in advance.	CO1: Disuss the concept of normed linear spaces, dual	PSO2,4	U,KN,AN

			spaces, weak convergence.		
			CO2: Apply the idea of the Hahn Banach theorem and open mapping theorem.	PSO2,3,4	U,KN,AN,E
			• CO3: Analyze linear operators on Hilbert space.	PSO2,3,4,5	U,KN,AN
			CO4:Evaluate orthonormal basis.	PSO2,4	E,AN
			• CO5: Demonstrate the commutative Banach algebras.	PSO 1,2,3	U,AN,C
PGMM Probability Theory	Local , Regional, National & Global	Advancement of the application of fluid dynamics	 CO1:Interpret the field and σ - fields CO2: Analyze the 	PSO1,3	U,CN

				probability spaces.	PSO3	CN,AN
				 CO3: Apply the concepts of random variables and distributions. 	PSO2	U,KN,CN
				• CO4: Describe the ideas of expectation and characteristic functions.	PSO4	U,KN,CN
				• CO5: Demonstrate the convergence of random variables.	PSO1,2,3	KN,CN
PGMN	Fluid Dynamics	Local , Regional, National & Global	Advancement of the application of fluid dynamics	• CO1:Discuss the behavior of fluids in motion.	PSO1,2	U,C,AN
		• CO2: Demonstrate the changes in flow when sphere of cylinder is introduced.	PSO1,2,3	CN,AN		
				CO3: Estimate the applications of two dimensional flow.	PSO3,4	CN,EN

				• CO4:Apply the stress components on viscous flow.	PSO3,4	CN, E
				CO5:Solve problems in viscous flow and describe the energy dissipation.	PSO 2,4	EN,AP
PGME5	Differential Geometry and Tensors	Local , Regional, National & Global	To apply the notion of geodesics on surfaces and their properties	• CO1:Discuss the concept of graphs and level setsvector fields.	PSO1,2	U,KN,AN
			• CO2:Analyze surfaces and vector field on surfaces.	PSO 2	U,KN,AN	
				• CO3:Apply the properties of geodesics.	PSO1,2	U.KN,AN
				• CO4:Interpret the scope of developable,	PSO1,2	U,KN,E

	minimal and ruled surfaces.		
	• CO5:Compute the compactness and completeness of surfaces.	PSO1,.2,5	U,KN,AN